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Admixture between populations originating on different continents can be exploited to detect disease susceptibility
loci at which risk alleles are distributed differentially between these populations. We first examine the statistical
power and mapping resolution of this approach in the limiting situation in which gamete admixture and locus
ancestry are measured without uncertainty. We show that, for a rare disease, the most efficient design is to study
affected individuals only. In a typical African American population (two-way admixture proportions 0.8/0.2, an-
cestry crossover rate 2 per 100 cM), a study of 800 affected individuals has 90% power to detect at P values !1055

a locus that generates a risk ratio of 2 between populations, with an expected mapping resolution (size of 95%
confidence region for the position of the locus) of 4 cM. In practice, to infer locus ancestry from marker data
requires Bayesian computationally intensive methods, as implemented in the program ADMIXMAP. Affected-only
study designs require strong prior information on the frequencies of each allele given locus ancestry. We show how
data from unadmixed and admixed populations can be combined to estimate these ancestry-specific allele frequencies
within the admixed population under study, allowing for variation between allele frequencies in unadmixed and
admixed populations. Using simulated data based on the genetic structure of the African American population, we
show that 60% of information can be extracted in a test for linkage using markers with an ancestry information
content of 36% at 3-cM spacing. As in classic linkage studies, the most efficient strategy is to use markers at a
moderate density for an initial genome search and then to saturate regions of putative linkage with additional
markers, to extract nearly all information about locus ancestry.

Background

Admixture between ethnic groups that differ in disease
risk for genetic reasons provides an experiment of nature
that can, in principle, be exploited to localize genes in
the same manner as an experimental cross. Although
advanced statistical methods are required to apply this
approach, in practice, the underlying principle on which
it relies to detect linkage is simple. Suppose, for instance,
that risk alleles at a locus are differentially distributed
between populations so as to generate a twofold higher
risk of osteoporotic fractures in Europeans compared
with West Africans. If we classify individuals of mixed
European/West African descent according to whether
they have 0, 1, or 2 gene copies of European ancestry
at this locus, disease risk will be twofold higher in those
with 2 copies than in those with 0 gene copies of Eu-
ropean ancestry. We do not have to compare disease risk
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between these three groups directly (which would re-
quire a cohort design). Instead we can study cases only,
comparing at each locus on each gamete the observed
and expected proportions of gene copies that have Eu-
ropean ancestry.

Although the theory of this approach was outlined
by McKeigue (1998), its practical application has
awaited the development of statistical methods and pan-
els of markers that are informative for ancestry. To gen-
eralize the methods used for linkage analysis of an
experimental cross between inbred strains to recently
admixed human populations, three main problems must
be overcome:

1. Confounding by population stratification. In an ex-
perimental cross, all individuals have the same his-
tory of admixture. In admixed human populations,
the history of admixture is not known, and pro-
portionate admixture varies between individuals.
This gives rise to associations of the disease with
ancestry at unlinked loci. This problem is overcome
by conditioning on the admixture proportions of
each individual’s parents (McKeigue 1998). To con-
dition on parental admixture, we can either adjust
for parental admixture in a generalized linear model
(Hoggart et al. 2003) or compare observed locus
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ancestry with expected locus ancestry (given paren-
tal admixture) within each individual.

2. Human ethnic groups are not inbred strains. Ex-
perimental crosses are usually undertaken using in-
bred strains, through use of marker loci at which
different alleles have been fixed in each strain. For
human populations defined by ancestral continent
of origin, we can preselect markers that show ex-
treme allele frequency differentials between these
continental group populations. However, even
these markers will not be perfectly informative for
ancestry. This problem can be overcome by a mul-
tipoint analysis that combines information from all
markers on the chromosome to extract information
about ancestry at each locus (Falush et al. 2003;
Hoggart et al. 2003).

3. Allele frequencies in the ancestral populations are
unknown. In an experimental cross, allele frequen-
cies in the ancestral strains are known. For an ad-
mixed human population, estimates of the ancestry-
specific allele frequencies—the probabilities of each
allele, given the ancestry of the gamete at the locus
under study—are subject to uncertainty. This is be-
cause the ancestral subpopulations that contributed
to the admixed population cannot usually be defined
precisely and, for some of these subpopulations, no
unadmixed descendants are available for study. This
problem is overcome by combining data from un-
admixed and admixed populations to estimate the
ancestry-specific allele frequencies, as described in
this article.

Similar problems arise in the analysis of experimental
crosses between outbred lines in which grandparents
have not been typed (Sillanpaa and Arjas 1999) and in
fine mapping of quantitative trait loci through use of
heterogeneous stocks of mice (Mott et al. 2000).

Study Designs and Statistical Power of Admixture
Mapping

In this section, we examine the statistical power of ad-
mixture mapping in the limiting situation in which locus
ancestry and gamete admixture proportions are measured
without uncertainty. We show later that these conditions
can be nearly met if a genomewide panel of ancestry-
informative markers is typed and regions of putative link-
age are then saturated with additional markers to extract
a high proportion of information about locus ancestry.

Comparison of Study Designs

We begin by comparing two alternative study designs
and statistical tests for linkage with a binary trait/dis-
ease: (1) an affected-only test comparing the observed
and expected proportions of gametes that have ancestry

from the high-risk subpopulation and (2) a case-control
test based on testing for association of disease with locus
ancestry from the high-risk population in a logistic re-
gression model. In deriving the tests below, we assume
that the test is evaluated at the disease locus. The ar-
guments below apply to both monogenic and oligogenic
disease models. Although we consider only tests of the
effect of a single locus, the arguments can easily be ex-
tended to construct tests for joint effects of two or more
loci, as proposed for studies of allelic association (Devlin
et al. 2003; Kilpikari and Sillanpaa 2003).

1. Affected-only test. The unit of observation is a single
gamete. The parameter of interest is the ancestry risk
ratio r, the risk ratio for disease in those with 2 versus
0 gene copies who have ancestry from the high-risk
subpopulation at the locus under study, based on a
multiplicative model for risk as a function of number
of copies of the high-risk allele. The probability ofzr

observing locus ancestry from the high-risk popula-
tion, given that the gamete is from an affected indi-
vidual and has admixture proportion v from the high-
risk subpopulation, is (McKeigue 1998)

�v r
z p . (1)r �v r � 1 � v

The likelihood of the observed locus ancestry state A
(an indicator variable scored as 0 for ancestry from the
low-risk subpopulation and as 1 for ancestry from the
high-risk subpopulation) is therefore

A 1�A�(v r) (1 � v)
L(r; A) p . (2)�v r � 1 � v

2. Case-control test. The unit of observation is a single
individual, and the parameter of interest is the log
odds ratio b for disease in those with 2 versus 0 gene
copies from the high-risk subpopulation at the locus
under study. The test is equivalent to testing the hy-
pothesis in a logistic regression model. Thisb p 0
test can also be applied to a cross-sectional or cohort
study of a binary trait. If we ignore confounding by
gamete admixture, the model can be specified as

P p
log p log � (x � v)b ,

1 � P 1 � p

giving the likelihood of the observed individual’s disease
status as

dp (x�v)be( )1�p

L(b; x) p , (3)
p (x�v)b1 � e1�p
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Table 1

Expected Information from Various Study Designs for Admixture Mapping

Study Design Parameter under Test Log Likelihood of One Observation

Expected Information
from Two Gametes

with Admixture
Proportions v

Affected-only , where r is ancestrylog r
risk ratio

(for one gamete)� �A log (v r)� log (v r�1 � v) 1
v(1 � v)

2
Affected-only with disease

prevalence w

b, log of ancestry odds
ratio

As above, with r expressed in terms of w, b 1 2v(1 � v)(1 � w)
2

Case-control with case/control
ratio p/(1 � p)

b, log of ancestry odds
ratio

p p
d [log � (x � v)b] � log {1 � exp [(x � v)b]}

1 � p 1 � p
1

v(1 � v)p(1 � p)
2

Cross-sectional study of
quantitative trait with
mean a, residual variance

2j

b, ancestry effect 2[y � a � (x � v)b]
�

22j

1 2v(1 � v)/j
2

NOTE.—v p proportionate admixture of the gamete from the high-risk ancestry; d p indicator variable for case-control status; x p proportion
of gene copies that have ancestry from the high-risk ancestry.

where x is the proportion of gene copies that have an-
cestry from the high-risk subpopulation (0, 1/2, or 1);
v is the mean admixture proportion of the individual’s
two gametes; b is the log odds ratio for disease in in-
dividuals with 2 versus 0 gene copies who have ancestry
from the high-risk subpopulation; p is the prevalence of
disease in the study sample (fixed to be 1/2 in a case-
control study with equal numbers of cases and controls);
P is the probability that the individual is affected, given
p, x, v, and b; and d is an indicator variable for disease
status (0 p control; 1 p case). Specifying the model
with the explanatory variable x centered about its ex-
pectation v eliminates covariance between b (the param-
eter under test) and the intercept.

Tests for linkage can be derived from the likelihood
functions given by equations (2) and (3). For a quan-
titative trait, similar tests can be constructed for the ef-
fect of locus ancestry in a linear regression model. The
asymptotic approximation of the log likelihood to a
quadratic function is improved if the parameter under
test is transformed (where necessary) to lie on the real
line. Thus, for the affected-only test, the log likelihood
is evaluated as a function of rather than r.log r

The statistical power to detect an effect of given size
in any given study design can be calculated from the
expected information, defined as minus the expectation
of the second derivative of the log likelihood with respect
to the parameter under test. Table 1 lists, for different
study designs, the parameter under test, the log likeli-
hood of a single observation at the trait locus, and the
expected information (at the null value of the parameter)
contributed by an individual with two gametes that have
proportionate admixture v from the high-risk subpop-
ulation. For comparison of the study designs, the ex-
pected information for the affected-only study was cal-

culated with respect to the log-odds ratio b rather than
. For a rare disease, .log r b ≈ log r

Table 1 shows that the expected information at b p
contributed by a single individual in a case-control0

design is times the expected informa-2p(1 � p)/(1 � w)
tion from an affected-only study. For a rare disease
( ), a case-control design with cases2(1 � w) ≈ 1 1/2 (n)
and controls ( ) has one-quarter of the1/2 (n) p p 1/2
expected information of an affected-only test with n
cases. Only if is a case-control design as efficientw p 0.5
as an affected-only design. If (prevalence 150%),w 1 0.5
it is more efficient to study controls only. These results
apply to any test based on the likelihood function.

Statistical Power Calculations

To detect a locus that generates an effect size of l

(where l can be either the log odds ratio b or the log
risk ratio ) with type I error probability a and typelog r
II error probability b, the required number of observa-
tions n is given by

�1/2 �1/2 2Z V � Z V1�a 0 1�b ln p ,( )l

where and denote the expected information con-V V0 l

tributed by a single observation under the null and the
alternative hypotheses, respectively. In an affected-only
design, the expected information contributed by a single
gamete with proportionate admixture v from the high-
risk subpopulation is

�v(1 � v) r
V p .2�4(v r � 1 � v)

For fixed r, V is maximized at . Thus,1/4 �1v p (1 � r )
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the most informative gametes are those with slightly less
than 50% admixture from the high-risk subpopulation.
For modest effect size, andV ≈ Vl 0

2Z � Z 11�a 1�bn ≈ . (4)( )l V0

Thus, from equation (4), the required information nV0

for 90% power ( ) to detect an effect of sizeZ p 1.281�b

at a one-sided P value of !10�5 ( ) isl p 1 Z p 4.271�a

approximated by . The sample2(Z � Z ) p 30.81�b 1�a

size required for 90% power to detect an effect of unit
size at a P value of !10�5 is easily calculated by dividing
the required information (30.8) by the expected infor-
mation from a single observation, given in the last col-
umn of table 1. The required sample size for any other
effect size is calculated by dividing these numbers by the
square of the effect size. Thus, in African American pop-
ulations, in which the average proportion v of West Af-
rican admixture is ∼0.8 (Parra et al. 1998), an affected-
only design would require 800 individuals for 90%
power to detect, at a P value !10�5, a locus contributing
an ancestry risk ratio ( ).r p 2 log r p 0.69

Statistical Modeling

The theoretical results outlined above are based on the
assumption that gamete admixture and locus ancestry
can be inferred without uncertainty. In reality, marker
data will yield only imperfect information about gamete
admixture and locus ancestry. We have previously de-
scribed how the program ADMIXMAP, which models
admixture, can be used to control for confounding by
population stratification in genetic association studies
(Hoggart et al. 2003; Genetic Epidemiology Group Web
site). We now describe the application of this program
to admixture mapping.

Modeling Admixture

The basic model fitted by ADMIXMAP has been de-
scribed in detail previously by Hoggart et al. (2003).
(Computational methods are described in appendix A.)
A similar model is fitted by the program STRUCTURE
(Falush et al. 2003). The population under study is mod-
eled as formed by admixture between k ancestral sub-
populations. We define “gamete admixture” as the pro-
portion of the parent’s genome that has ancestry from
each subpopulation; this is not quite the same as the
proportion of the gamete’s genome that has ancestry
from each subpopulation. The distribution of gamete
admixture in the admixed population is modeled by
a Dirichlet distribution with parameter vector a p

. Two alternative models for gamete assort-(a , … ,a )1 k

ment can be specified in ADMIXMAP: a random-mating

model, in which the two parental gametes are drawn
independently from this Dirichlet distribution; or an as-
sortative-mating model, in which admixture proportions
in the two parental gametes are the same. These alter-
natives represent extremes; in principle, the model could
be extended to estimate the degree to which mating is
assortative for individual admixture.

The stochastic variation of ancestry across loci on each
gamete is modeled by k independent Poisson arrival pro-
cesses. Since the relative intensities of these arrival pro-
cesses are specified by the admixture proportions of the
gamete v, this requires only one extra parameter: the sum
of the intensities of the arrival processes, denoted by t.
Although the stochastic variation of ancestry does not
exactly follow the model of independent Poisson arrival
processes, even under the assumption of no interference
(McKeigue 1998), this modeling assumption simplifies the
problem. Where admixture has occurred in a single pulse,
the expected value of t is the number of generations that
have elapsed since unadmixed ancestors (Falush et al.
2003). The parameter t determines the resolution of ad-
mixture mapping studies and the density of markers re-
quired to extract information about ancestry at each lo-
cus. With higher values of t, the mapping resolution will
be sharper, but the density of markers required to extract
a given proportion of information will also be higher. For
a gamete that has admixture proportion v from a given
subpopulation, the ancestry crossover rate r (the density
of transitions between ancestry from this subpopulation
and ancestry from one of the other subpopulations) is
given by .r p 2v(1 � v)t

The model assumes no allelic association, conditional
on locus ancestry, between loci. Where two or more
markers are so close together that this assumption can-
not be relied on, these markers are grouped as a single
“compound locus.” Ancestry is assumed to be the same
at all marker positions within a compound locus on any
given gamete, because possible recombination since ad-
mixture can be ignored over this short distance. At com-
pound loci, haplotypes and haplotype frequencies are
modeled instead of alleles and allele frequencies. Given
ancestry at a locus, the likelihood of the observed alleles
or unobserved haplotypes is multinomial, with proba-
bilities specified by the ancestry-specific allele (or hap-
lotype) frequencies. The program samples the posterior
distribution of the haplotypes and the ancestry-specific
allele (or haplotype) frequencies at each locus.

Modeling Dependence of a Trait on Gamete
Admixture

For case-control or cross-sectional designs, a gener-
alized linear model is specified for the dependence of the
trait on the mean admixture proportions of both gam-
etes, together with any other explanatory variables spec-
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ified by the user. For a quantitative trait, this is a linear
regression model; for a binary trait, this is a logistic
regression model. Modeling the dependence of the trait
on individual admixture allows the program to use the
trait value as well as the genotype data to infer gamete
admixture proportions. Even when the test for linkage
is evaluated on affected individuals only, including a con-
trol group and fitting a logistic regression model will
help the model to infer gamete admixture and allele
frequencies.

Modeling Allele Frequencies

The probabilities of observing each possible allele or
haplotype at a locus, given the ancestry of the gamete
at that locus, are specified by the ancestry-specific allele
(or haplotype) frequencies in the admixed population.
ADMIXMAP allows the ancestry-specific allele frequen-
cies to be specified in one of three ways:

1. as constants specified by the user, with a score test
for misspecification, as described by McKeigue et
al. (2000);

2. as random variables with a Dirichlet prior distri-
bution specified by the user (a reference prior [Jef-
freys 1961], with all elements of the Dirichlet pa-
rameter vector equal to 0.5, can be specified where
no allele frequency data are available); and

3. as random variables with a “dispersion” model that
allows the ancestry-specific allele frequencies in the
admixed population to vary from the correspond-
ing frequencies in unadmixed modern descendants.

For most populations formed by recent admixture be-
tween continental groups, some information about an-
cestry-specific allele frequencies is available from sam-
pling modern unadmixed descendants of the continental
groups that contributed to the admixed population. We
may be prepared to assume that the allele frequencies in
these unadmixed descendants are the same as the cor-
responding ancestry-specific allele frequencies in the ad-
mixed population; we denote this as the “no dispersion”
assumption. Where allele frequencies have been esti-
mated from relatively small samples of unadmixed in-
dividuals, it is necessary to allow for sampling error in
the estimates. This is straightforward within a Bayesian
framework, in which the posterior distribution from the
last study becomes the prior for the next study. Thus,
we can specify a Dirichlet prior distribution for the an-
cestry-specific allele frequencies as the posterior distri-
bution that is obtained by combining a reference prior,

, with the likelihood of the data from theDi(0.5, … ,0.5)
unadmixed population. The parameters of this distri-
bution are obtained simply by adding 0.5 to the observed
counts of each allele in the unadmixed population sam-
ple. We can test the assumption of no dispersion by

constructing a model diagnostic based on the posterior
predictive check probability, described in appendix B.
For each subpopulation, this test compares the likeli-
hood of the observed and replicate allele counts in the
admixed population given the ancestry specific allele fre-
quencies. This test is computed at each locus and (by
summing the log likelihoods over all loci) as a summary
test for each subpopulation.

Where there is evidence that the no-dispersion as-
sumption is violated, we can fit a dispersion model. In
comparison with a model that assumes no dispersion,
this gives less weight to the allele frequency data from
modern unadmixed descendants (the “historic” allele
frequencies) when estimating ancestry-specific allele fre-
quencies within the admixed population under study.
This is achieved by specifying a hierarchical model for
allele frequencies similar to that described by Lockwood
et al. (2001). For each continental group, the ancestry-
specific allele frequencies in the admixed population

and the corresponding “historic” frequencies in the(1)f

unadmixed population are drawn independently(2)f

from a Dirichlet distribution, . For a locus with aDi(m)
alleles, and . We re-(j) (j) (j)m p (m , … ,m ) f p (f , … ,f )1 a 1 a�1

parameterize the Dirichlet distribution such that h p
. The allele frequencies at each locus are distrib-a� mllp1

uted as

(ij) (i) (ij) (i) (i)( ) ( )p f dm ,h p Di f dm , … ,m ,h ,1 a�1

where i indexes loci and j indexes either a subpopulation
within the admixed population ( ) or the corre-j p 1
sponding unadmixed continental group ( ). The dis-j p 2
persion parameter h controls the variance of the Dirichlet
distribution and is specified to be the same for all loci
in each continental group. It is related to Wright’s Fst

(Wright 1951), by (Lockwood et al.�1F p (1 � h)st

2001). In our application, h indexes dispersion between
“historic” allele frequencies in modern unadmixed de-
scendants and the corresponding ancestry-specific allele
frequencies within the admixed population. Larger val-
ues of h imply less dispersion of allele frequencies.

Simulations show that, for the dispersion parameter
h to be estimated reliably from data on an admixed
population sample with a vague prior distribution, either
the marker panel must contain sequences of closely
linked markers, so that locus ancestry can be inferred
accurately, or admixture proportions must vary widely
between the sampled individuals, so that ancestry-spe-
cific allele frequencies can be inferred from the depen-
dence of observed allele frequencies on individual ad-
mixture proportions. In studies reported so far, we have
used only the Penn State marker panel (Shriver et al.
2003), which has only a few short sequences of linked
markers. In this situation, it is necessary to assign an
informative prior for the dispersion parameter h, based
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on estimates of the variance of allele frequencies between
subpopulations within each continental group. For in-
stance, Fst between subpopulations within West Africa
has been estimated as ∼0.02 (Cavalli-Sforza et al. 1994).
If dispersion of allele frequencies between modern West
Africans and the corresponding ancestry-specific allele
frequencies in the African American population is similar
to the dispersion between West African subpopulations,
this suggests that the prior for h should have its mode
at ∼50. Similarly, Fst between subpopulations within Eu-
rope has been estimated as ∼0.002, suggesting that the
prior for h should have its mode at ∼500. Since the
dispersion parameter h will depend on how the markers
were selected and what mix of subpopulations within
the continental group was sampled to estimate allele
frequencies, the prior for h should reflect this uncertainty.

In accordance with the principles of Bayesian inference,
we can use the posterior distribution of ancestry-specific
allele frequencies generated by ADMIXMAP to specify a
prior distribution for these allele frequencies in subsequent
studies of new samples from the same admixed popula-
tion. From this stage onward, we need not specify a dis-
persion model, as long as we can assume that ancestry-
specific allele frequencies do not vary between different
samples from the same admixed population. To simplify
the computation, the posterior distribution of allele fre-
quencies generated by ADMIXMAP is approximated by
a Dirichlet distribution, which can be used to specify a
prior for subsequent studies. The parameters of this dis-
tribution are calculated by equating the means and the
determinant of the covariance matrix of the Dirichlet dis-
tribution with the posterior means and the determinant
of the posterior covariance matrix of the allele frequencies
generated by ADMIXMAP.

Application to Admixture Mapping

Tests for linkage.—The tests for linkage provided in
ADMIXMAP are score tests based on the missing-data
likelihood. With this approach, it is straightforward to
test any null hypothesis of the form , wherel p l l0 0

is the value specified in the Bayesian model. The basic
algorithm has been described elsewhere (McKeigue et al.
2000; Hoggart et al. 2003). For each realization of the
complete data, we calculate the realized score (gradient
of the log likelihood at ) and the realized informationl0

(minus the second derivative of the log likelihood at
). For an affected-only study testing the null hypothesisl0

, the realized score and information for a singlelog r p 0
gamete at any given locus can be derived from expression
(2) as and , respectively. The score(A � v)/2 v(1 � v)/4
U is evaluated as the posterior expectation of the realized
score, and the observed information V is calculated by
subtracting the missing information (posterior variance
of the realized score) from the complete information

(posterior expectation of the realized information). Un-
der the null hypothesis, has a x2 distribution.t �1U V U

In comparison with a fully Bayesian approach, this
score test algorithm has several advantages: (1) it is com-
putationally efficient, because multiple hypotheses can
be tested in a single run of the Markov chain Monte
Carlo sampler; (2) it requires only a null model to be
fitted, avoiding difficulties (such as ascertainment bias)
that may arise away from the null; and (3) the ratio of
observed to complete information is a useful estimate of
the efficiency of the study design relative to an ideal
experiment in which latent variables are measured di-
rectly. In large samples, score tests are asymptotically
equivalent to likelihood ratio tests. Furthermore, as-
ymptotically, the log likelihood is approximated by a
quadratic (see eq. [5]).

An alternative approach to testing for linkage of a
particular locus in an affected-only design would be to
compute a likelihood ratio that compares the likelihood
under the null hypothesis, , that there is no diseaseH0

locus linked to the locus under study, with the alternative
hypothesis, , that the locus under study contributes aH1

population risk ratio of r.
Information content mapping.—An information con-

tent map measures the adequacy of a marker set to detect
linkage in comparison with an infinitely dense marker
map that allows locus ancestry and gamete admixture
to be inferred without uncertainty. This allows us to
determine where additional markers should be added to
the map. We can construct this information content map
through use of the ratio of observed to complete infor-
mation in the affected-only score tests at each locus. For
this purpose, the tests should be evaluated on an unse-
lected sample of individuals for whom we can assume
that the null hypothesis is true. The information content
of the map has to be evaluated separately for each ad-
mixed population under study, because it depends on
the history of admixture as well as on the ancestry-spe-
cific allele frequencies. As in classic linkage studies, there
is a trade-off between the marker density required to
extract a given proportion of information and the in-
formation content of the individual markers.

There are several possible ways to calculate marker
information content for ancestry. In this article, the
quoted values of marker information content for ances-
try are based on the expected proportion f by which the
prior variance of locus ancestry on a single gamete is
reduced by typing the locus (McKeigue 1998; Molokhia
et al. 2003). This measure is useful for our purposes,
because it is equivalent to the efficiency that the affected-
only score test would have if no information from linked
marker loci were available. An alternative measure, In,
has been suggested by Rosenberg et al. (2003). Although
absolute values of f and In differ, both measures rank
markers similarly with respect to information content.
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Exclusion mapping.—An exclusion map shows, at
each position on the genome, the effect size r that can
be excluded at a given LOD score threshold. This can
be used to exclude regions from typing additional mark-
ers, because the data already obtained are sufficient to
exclude an effect of the size that the study was designed
to detect. To construct an exclusion map, we require the
log likelihood as a function of the effect size at each
locus. As noted above, a quadratic function that ap-
proximates the log likelihood —say, —canlog L(r; G) Le

be obtained from the score U and information V cal-
culated in the score test. For an affected-only test, the
log likelihood is evaluated as a function of ; if welog re

arbitrarily set , this function isL p 0

1 2L p � V(log r) � U log r . (5)e e2

To compute exclusion thresholds based on the tradi-
tional criterion of a LOD score of �2, we can substitute

and solve this quadratic equation to cal-L p log 0.01e

culate two values of r at which the likelihood is 100
times lower than the likelihood at . Comparisonr p 1
with the true log-likelihood function (calculated in the
limiting situation in which gamete admixture and locus
ancestry are measured without uncertainty) shows that
this approximation is fairly accurate, except at values
of r that are far from the null, which are not relevant
to exclusion mapping.

Mapping Resolution

The expected size of the confidence region for the po-
sition of a disease locus detected by admixture mapping
with an affected-only design can be calculated by adapting
the approach used by Kruglyak and Lander (1995b) to
generate the probability distribution of the size of the
confidence region in linkage studies of affected relative
pairs. We assume that gamete admixture and locus an-
cestry are measured without uncertainty, as in the limiting
situation in which an infinitely dense marker map has
been typed. For a single gamete from an affected individ-
ual, the probability of ancestry from the high-risk sub-zr

population at the disease locus is given by equation (1).
It follows that the likelihood ratio contrasting the hy-
pothesis that a disease locus with effect size r is at a given
map position with the hypothesis that this position is
unlinked to the disease is the ratio of two Bernoulli like-
lihoods with parameters and v, respectively.zr

Kruglyak and Lander (1995b) use the theory of ran-
dom walks to derive an approximation for the distri-
bution of the size of a confidence region that hasCg

probability g of containing the disease locus. In the re-
gion of the disease locus, the LOD score behaves ap-
proximately as a random walk conditioned to pass

through its expected value at the disease locus. In an
affected-only mapping study, this walk has constant step
size,

z 1 � zr r
d p log � log ,( )10 10 ( )v 1 � v

with upward and downward step probabilities of p and
respectively, where1 � p

(1 � z )vr
p p .

(1 � z )v � z (1 � v)r r

The confidence region is defined as the smallest in-Cg

terval containing all points at which the LOD score ex-
ceeds a threshold level , where is the maxi-∗ ∗Z � T Zg

mum LOD score. is given byT log [(1 � g)/2] �g 10

.log (1 � p)10

To calculate the distribution of the size of the confi-
dence region, we require the distribution of the number
of transitions S required for the LOD score to drop per-
manently below . In an affected relative-pair∗Z � Tg

study, these transitions are between sharing 0 and 1 gene
copies on pairs of gametes inherited from a common
ancestor. In an admixture mapping study, the transitions
are between states of ancestry from low-risk and high-
risk subpopulations on single gametes. These transitions
are modeled as a Poisson arrival process with intensity
parameter per morgan in then p [r (1 � z ) � r z ]n� r � r

region of the disease susceptibility locus, where n is the
number of affected gametes and and are the den-r r� �

sities of transitions to higher and lower LOD scores,
respectively. Thus, for a gamete with proportionate ad-
mixture v from the high-risk subpopulation, the densities
of these transitions are given by andr p vt r p� �

, where t is the sum-of-intensities parameter de-(1 � v)t
fined above. The average density of ancestry crossovers
over all n gametes in the region of the disease locus is

per morgan. The distancen p [vt(1 � z ) � (1 � v)tz ]nr r

between successive arrivals follows an exponential dis-
tribution with mean . It follows that the distance for1/n
the arrival of S transitions has a gamma distribution with
shape parameter S and scale parameter n. Samples from
this distribution can be generated by simulation, allow-
ing us to compute the distribution of the size of the
confidence region .Cg

Data Sources

Three African American population samples and one
Hispanic American population sample were typed for
diallelic markers selected from a panel of 38 markers
informative for West African, European, and Native
American ancestry. The African American samples con-
sisted of a cross-sectional study of 202 individuals in
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Table 2

Posterior Summaries for the Sum-of-Intensities Parameter in Four Admixed
Populations

POPULATION

NO. OF

INDIVIDUALS

NO. OF

MARKERS

SUM-OF-INTENSITIES

PARAMETER

Median
95% Credible

Interval

African American:
Prostate cancer 393 64 5.7 4.3–7.2
Philadelphia 202 26 6.1 3.3–10.6
Washington, DC 232 33 7.1 4.6–10.8

Hispanic American:
San Luis Valley 446 21 8.1 5.1–12.4

Philadelphia, typed at 26 loci; a cross-sectional study of
232 individuals in Washington, DC, typed at 34 loci (see
Shriver et al. [2003] for details of this collection); and
393 individuals resident in the Washington, DC region
who were included in a case-control study of prostate
cancer, typed at 27 loci (see Kittles et al. [2001] and
[2002] for details of this collection). The Hispanic Amer-
ican sample was a cross-sectional sample of residents of
San Luis Valley, Colorado, enriched with cases of dia-
betes ascertained from clinics, typed at 21 marker loci,
as described by Hoggart et al. (2003).

Samples of unadmixed West Africans, Europeans,
and Native Americans were typed for the same panel
of 38 ancestry-informative markers. The West African
sample consisted of 369 individuals typed at all 38 loci,
the European sample consisted of 229 individuals typed
at 35 loci, and the Native American sample consisted
of 182 individuals typed at 35 loci. For further details
of these data sets, see Shriver et al. (2003).

Results

Estimation of Ancestry Crossover Rate and Mapping
Resolution

Table 2 shows estimates of the sum-of-intensities pa-
rameter t based on the three African American samples
and the one Hispanic American sample. The 95% cred-
ible intervals are wide, since the marker panels used in
these studies included only a few sequences of linked
markers. Combining these studies, we estimate t in Af-
rican Americans to be ∼6 per 100 cM. Falush et al.
(2003) estimated t in a sample of African Americans
from Maywood, Illinois to have a posterior mean of 9.8
and a 90% credible region of 7–13.

A sum of intensities of 6 implies that, for admixture
proportions 0.8/0.2, the ancestry crossover rate is ∼2
per 100 cM ( ). From this, we cal-2 # 0.80 # 0.20 # 6
culated the expected resolution of admixture mapping
studies in African American populations in the limiting
situation in which locus ancestry and gamete admixture

are measured without uncertainty. Figure 1 shows the
median and upper 95th percentile of the distribution of
the size of the confidence region, plotted against the
ancestry risk ratio r for a sample size of 800 individuals
with admixture proportion 0.8 from the high-risk pop-
ulation and . For , the expected size of thet p 6 r p 2
confidence region is 4 cM. Since the scale parameter n

has a linear relationship with the sample size n, the ex-
pectation of the size of the confidence region is propor-
tional to . Thus for an expected mapping resolution1/n
of 1 cM, ∼3,200 individuals would be required for a
locus with ancestry risk ratio , and ∼9,000 indi-r p 2
viduals for .r p 1.5

Testing for Linkage, Information Content Mapping,
and Exclusion Mapping

To demonstrate the application of ADMIXMAP to
admixture mapping with a dense marker map, we sim-
ulated an affected-only study based on the genetic struc-
ture of the African American population specified as
two-way admixture with admixture proportion v p

from the high-risk population and sum-of-intensities0.8
per morgan. For each individual, marker geno-t p 6

types were generated on two chromosomes 100 cM long
with markers spaced every 1 cM, one containing a dis-
ease locus that generates an ancestry risk ratio of 2 lo-
cated halfway along the chromosome, and the other with
no disease locus. These markers were diallelic, with the
frequency of allele 1 specified as 0.8 in the high-risk
subpopulation and as 0.2 in the low-risk subpopulation
(equivalent to an information content for ancestry of

[McKeigue 1998] or [Rosenberg etf p 0.36 I p 0.28n

al. 2003]). Both data sets also included 200 unlinked
diallelic markers that were fully informative for ancestry
to represent the information on gamete admixture that
would be available from typing several hundred other
ancestry-informative markers across the genome.

Three analyses of this simulated study with ADMIX-
MAP were undertaken: (1) one using genotype data at
all marker loci; (2) one with genotypes at every second
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Figure 1 Median and upper 95th percentile of the size of the
95% confidence region for the position of a disease locus plotted
against the risk ratio for a fixed sample size of 800 individuals with
admixture proportion 0.8 from the high-risk population and .t p 6

Figure 2 Plots of P values for simulated data from a� log10

chromosome of length 100 cM with disease locus responsible for a
risk ratio of 2 at 50 cM. Solid line, markers spaced every 1 cM; dotted
line, markers spaced every 3 cM; dashed line, markers randomly
spaced with an average spacing of 3 cM.

and third linked marker locus set to “missing” on the
two chromosomes, to simulate a study with markers
evenly spaced at 3 cM; and (3) one using 33 randomly
chosen markers on each of the two chromosomes, to
simulate a study with markers unevenly spaced at an
average spacing of 3 cM. Including the loci with missing
genotypes ensures that the program will calculate the
proportion of information extracted at these positions,
so that we can evaluate the extent to which information
extracted falls off between marker loci. Figure 2 shows
the P values calculated in the score tests across the chro-
mosome containing the disease locus from all three anal-
yses. In each analysis, linkage is detected over a broad
region. Figure 3 shows the proportion of information
extracted on the chromosome without the disease locus.
With a marker spacing of 1 cM, the proportion of in-
formation extracted is 180% for the middle 90% of the
chromosome. With markers evenly spaced at 3 cM, the
proportion of information extracted is ∼60% for the
middle 90% of the chromosome, and the information
falls only slightly between marker loci. With an average
3-cM spacing but randomly spaced markers, the infor-
mation falls to ∼50% between some marker loci. Figures
4 and 5 display the estimated thresholds beyond which
an ancestry risk ratio r at the locus can be excluded at
a LOD score of �2, for the chromosome containing the
disease locus and the chromosome without a disease
locus, respectively. Even with markers at 3-cM spacing,
an ancestry risk ratio is excluded at a LOD scorer � 2
of �2 over the entire chromosome with no disease locus.

On the chromosome containing the disease locus, the
regions over which an ancestry risk ratio 12 can be ex-
cluded are larger with markers spaced every 1 cM than
with markers spaced every 3 cM.

Estimation of Ancestry-Specific Allele/Haplotype
Frequencies

To test the ability to learn about ancestry-specific allele
frequencies from successive samples from the same ad-
mixed population under study, we used the three African
American data sets described above. In total, the three
data sets included 37 ancestry-informative markers, of
which 23 were common to all three data sets; details of
the markers are given by Shriver et al. (2003). The model
was specified with three subpopulations: West African,
European, and Native American. If we assume that an-
cestry-specific allele frequencies in the African American
population do not vary with area of residence, successive
updates of the ancestry-specific allele frequencies should
yield successively closer fits of the estimated allele fre-
quencies to the true values. To test this prediction, we
computed two sets of allele frequency estimates: (1) es-
timates obtained as the mean frequencies in samples
from unadmixed West African populations and (2) es-
timates obtained as the mean of the posterior distribu-
tion obtained by fitting a dispersion model with “his-
toric” allele frequencies given by samples from the
unadmixed West African populations and from the
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Figure 3 Information content map for simulated data from a
chromosome of length 100 cM without a disease locus. Solid line,
markers spaced every 1 cM; dotted line, markers spaced every 3 cM;
dashed line, markers randomly spaced with an average spacing of
3 cM.

Figure 4 Exclusion map for simulated data from a chromosome
of length 100 cM with disease locus responsible for a risk ratio of 2
at 50 cM. Solid line, markers spaced every 1 cM; dotted line, markers
spaced every 3 cM; dashed line, markers randomly spaced with an
average spacing of 3 cM.

Washington, DC and Philadelphia data sets as the ad-
mixed populations under study. Since the number of
markers in these studies was too small for reliable in-
ference on the dispersion parameters, informative priors
were specified for these parameters. The prior on the
dispersion parameter for West African allele frequencies
was specified as , which has 95% of itsh ∼ Ga(4, 0.04)
mass between 20 and 200. The prior on the dispersion
parameter for European allele frequencies was specified
as , which has 98% of its mass betweenh ∼ Ga(6, 0.02)
100 and 1,000. Since there is very little information
about Native American allele frequencies in these Afri-
can American population samples, the prior on the dis-
persion parameter for Native American allele frequen-
cies was specified as , which has meanh ∼ Ga(1,000, 10)
100 and variance 10.

Figure 6 compares the fit to the prostate cancer data
set of these two sets of allele frequency estimates. Each
set of estimates was used to specify a model with fixed
allele frequencies, and a score test for misspecification
of these allele frequencies was calculated. With allele
frequency estimates based only on sampling unadmixed
populations, the test for misspecified allele frequencies
was significant at the 1% level for four loci and signif-
icant at P values !10�5 for two of these. With allele
frequency estimates based on the posterior distribution
obtained by combining data from unadmixed and ad-
mixed populations (Washington, DC and Philadelphia)
in a dispersion model, only two loci showed evidence of

misspecification of allele frequencies significant at the
1% level. A similar improvement in fit between the orig-
inal and updated African-specific allele frequency esti-
mates was obtained when the prostate cancer data set
was analyzed with a model in which allele frequencies
were specified as random variables with prior distribu-
tions rather than as fixed. To test the fit of such a model,
we have to use a model diagnostic based on the posterior
predictive check probability, as described above in the
“Modeling Allele Frequencies” subsection. With prior
distributions based on using data from unadmixed pop-
ulations in a dispersion model, the posterior predictive
check probability increased from 0.06, in a model using
the original prior distribution for African-specific allele
frequencies, to 0.27, in a model using the updated prior
distributions. For calculation of predictive check prob-
ability, see appendix B.

Discussion

Earlier writers suggested that the information about
linkage that is generated by admixture could be ex-
ploited to localize disease susceptibility genes by testing
for the allelic associations with disease that are generated
by admixture (Chakraborty and Weiss 1988). Stephens
et al. (1994) introduced the term “mapping by admix-
ture linkage disequilibrium” (MALD) for this approach.
In contrast, the approach described in the present article
relies on testing for association of disease with locus
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Figure 5 Exclusion map for simulated data from a chromosome
of length 100 cM without a disease locus. Solid line, markers spaced
every 1 cM; dotted line, markers spaced every 3 cM; dashed line,
markers randomly spaced with an average spacing of 3 cM.

Figure 6 Plot of P values obtained in a test for misspecified
African allele frequencies for the model specified with frequency es-
timates from unadmixed West African populations (horizontal axis)
and the model specified with frequency estimates by combining data
from unadmixed and admixed populations (Washington, DC and Phil-
adelphia) in a dispersion model (vertical axis). Loci for which the
misspecification test is significant at P values !.01 for allele frequencies
specified by the first model are shown as blackened squares.

ancestry inferred from marker data. In comparison with
testing for an effect of locus ancestry on disease risk,
methods that rely on testing for allelic association have
two serious limitations: they cannot use an affected-only
design, and they cannot combine information from
linked markers in a multipoint analysis to extract in-
formation about ancestry.

We have shown that, for a rare disease, a comparison
of cases and controls conveys only one-quarter as much
information as an affected-only study with the same
total sample size. Because a test for allelic association
cannot combine information from linked markers, its
efficiency for detecting loci contributing to ethnic var-
iation in disease risk is limited by the ancestry infor-
mation content of the individual marker loci. Markers
selected to be informative for ancestry typically have
!40% average information content for ancestry. Thus,
with a dense map of markers informative for ancestry,
a case-control study testing for allelic association will
convey less than one-tenth ( ) as much in-0.25 # 0.40
formation as an affected-only admixture mapping study
with the same total sample size. Even for a common
disease, it is more efficient to study cases only than to
compare cases and controls, unless the prevalence of the
disease is 150%. For a disease with prevalence 150%,
the most efficient design is to study unaffected individ-
uals only.

The sample sizes required to detect a locus that makes
a modest contribution to ethnic variation in disease risk
(ancestry risk ratios of 1.5–2) are within realistic limits,

even in African American populations, in which average
admixture proportions (0.8/0.2) are far from optimal
for admixture mapping studies. We have shown that, if
such studies in African American populations are pow-
ered as we suggest, the expected size of the 95% con-
fidence region is ∼4 cM. In practice, where linkage to
a disease locus has been detected on a chromosome, we
would not calculate a confidence region for the position
of this locus but instead would extend the statistical
model to estimate the effect size and position of this
disease locus in a fully Bayesian analysis, obtaining a
posterior interval for the position of the locus.

Where linkage to ethnic variation in disease risk is
detected, several strategies can be employed for fine map-
ping. One approach, as noted previously (Hoggart et al.
2003), is to construct a test for allelic association that
conditions on locus ancestry, thus eliminating the long-
range signals generated by admixture. Another possible
strategy is to screen for evidence of recent selection (Sa-
beti et al. 2002), since differential distribution of risk
alleles between ethnic groups is likely to result from dif-
ferential selection pressure.

The expected resolution of admixture mapping and
the required marker density depend on the sum-of-in-
tensities parameter or, equivalently, on the ancestry
crossover rate. We estimate the sum of intensities and
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the ancestry crossover rate in African Americans to be
∼6 per 100 cM and 2 per 100 cM, respectively. Our
simulations show that, to extract at least 60% of in-
formation across the genome in an initial genome search
using a panel of markers with average information con-
tent for ancestry of 0.36, an average marker spacing of
3 cM is required. This will require ∼1,200 markers
across the genome. It is not necessary for the markers
to be evenly spaced, since, at this marker density, the
information does not fall off much between marker loci.

Many of the principles previously enunciated for mul-
tipoint family linkage studies by Kruglyak and Lander
(1995a, 1995b) can be extended to admixture mapping
studies. One example is the algorithm for computing
the distribution of the confidence region, as outlined in
the present article. Another is the trade-off between
marker information content and required marker den-
sity. Where markers with average information content
as high as 0.36 are not available, the same proportion
of information could be extracted by a denser map of
less informative markers. As with family linkage studies,
the most efficient strategy is to undertake an initial ge-
nome search with a marker set that is adequate to ex-
clude, over most of the genome, an effect of the size
that the study was designed to detect, and then to sat-
urate regions of putative linkage with additional mark-
ers to extract nearly all information about ancestry. The
simulations presented in this article suggest that a
marker map at relatively low density (1 per 3 cM) may
be sufficient for the initial genome search. Calculations
of the statistical power and mapping resolution of ad-
mixture mapping studies can be based on assuming a
dense marker map, such that gamete admixture and
locus ancestry can be measured without uncertainty.

One criticism of admixture mapping is that it assumes
homogeneity within each of the ancestral continental
groups that underwent admixture. Thus, for instance,
it has been suggested that genetic heterogeneity within
Africa makes it unrealistic to model the genetic structure
of the modern African American population simply as
a mixture of two gene pools: West African and Euro-
pean (Terwilliger and Göring 2000). However, the
model used in ADMIXMAP does not assume genetic
homogeneity between subpopulations within West Af-
rica; it assumes homogeneity only within the pool of
genes of African ancestry (and, similarly, within the pool
of genes of European ancestry) in the African American
population. This is a more realistic assumption; even
though slaves were taken from diverse regions of West
Africa, genes from these diverse African subpopulations
are likely to have been mixed by subsequent movement.
The assumption of homogeneity can be tested by ex-
tending the test for population stratification described
by Hoggart et al. (2003) to test for residual stratification
within each subpopulation.

Where there is heterogeneity within continental
groups, unadmixed groups available for sampling may
be unrepresentative of those that underwent admixture.
Thus, for instance, we cannot sample the exact mix of
African subpopulations that contributed to the pool of
genes of African ancestry in the modern African Amer-
ican population. Genetic heterogeneity within continen-
tal groups may also contribute to variation of ancestry-
specific allele frequencies within the admixed population
from the allele frequencies in modern unadmixed West
African, European, and Native American populations.
We have demonstrated with real data that ancestry-spe-
cific allele frequencies can be estimated more accurately
by combining data from unadmixed and admixed pop-
ulations, allowing for dispersion of allele frequencies
between unadmixed and admixed populations. With a
strong prior on the ancestry-specific allele frequencies,
the design of admixture mapping studies can be based
on typing only affected individuals, without having to
type a control group to estimate allele frequencies in-
dependently of the case sample. For this approach to be
fully exploited, researchers should establish a common
panel of ancestry-informative markers for admixture
mapping studies and pool their control data so that all
available data can be used to estimate ancestry-specific
allele frequencies in the admixed population under study.

In comparison with other approaches to detecting dis-
ease susceptibility genes, admixture mapping has three
main advantages: it has higher statistical power than fam-
ily linkage studies (McKeigue 1998), it requires fewer
markers for a genome search than whole-genome asso-
ciation studies would require, and it is not affected by
allelic heterogeneity (Terwilliger and Weiss 1998). The
ability to detect a locus by admixture mapping depends
not on the number of disease alleles at the locus but only
on whether the pool of disease alleles at the locus is
distributed differentially between the ancestral subpop-
ulations. It is possible that such loci exist even where no
overall ethnic variation in disease risk is detectable.
Where admixed populations exist, the feasibility of
admixture mapping depends on the availability of ge-
nomewide panels of marker polymorphisms that are in-
formative for ancestry between the various subpopula-
tions that have undergone admixture. For this purpose,
any type of markers can be used: SNPs, insertion/deletion
polymorphisms, or microsatellites. Although microsatel-
lites have higher polymorphism information content than
diallelic markers, they do not necessarily have higher in-
formation content for ancestry. The accumulation of data
on SNP allele frequencies in the public domain makes it
possible to select subsets that show extreme frequency
differentials between continental groups without having
to screen unselected markers. ADMIXMAP can be used
to evaluate the information content for ancestry of a
marker panel in a given admixed population. Markers
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can be added where necessary until the proportion of
information extracted exceeds some specified minimum
at all positions on the genome.

We note that ADMIXMAP, as a general-purpose pro-
gram for modeling genotype and phenotype data from
admixed or stratified populations, has several applica-
tions apart from admixture mapping. The STRUC-
TURE program (Falush et al. 2003) fits a similar model
for population admixture but does not incorporate a
regression model for dependence of the trait on indi-
vidual admixture and does not include tests for linkage.
We have already described the use of ADMIXMAP to
detect and control for hidden population stratification
as a confounder in genetic association studies (Hoggart
et al. 2003). Other applications include estimating the
relation of disease risk to individual admixture (Mo-
lokhia et al. 2003), identifying outlying individuals
(within an otherwise homogeneous population) who are
admixed or have ancestry from another subpopulation,
and predicting traits that are strongly related to indi-
vidual admixture proportions (such as skin pigmenta-
tion and eye color) from a DNA sample recovered from
the scene of a crime.
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Appendix A

Computational Methods

ADMIXMAP generates the posterior distribution of
all unobserved variables, given the observed data, by
Markov chain Monte Carlo simulation. With a dense
map of markers, it is necessary to sample jointly the
states of ancestry at all loci on each chromosome to
ensure that the sampler mixes rapidly. This is imple-
mented using a hidden Markov model forward-back-
ward algorithm, as described by Falush et al. (2003). To
allow conjugate updating of gamete admixture propor-
tions, we introduce an auxiliary vector of binary vari-
ables for each gamete. The coordinatesy p (y , … ,y )1 m�1

of these vectors take values such that if an arrivaly p 1j

from one of the k independent Poisson processes has
occurred between locus j and locus , andj � 1 y p 0j

otherwise. Gamete admixture proportions are then up-
dated from a Dirichlet distribution defined as

m

Pr (v da,A ) p Di v da � y A ,�( )i i k�1 i ij ij
jp1

where k is the number of subpopulations that underwent
admixture, are the parameters of the Dirichlet distri-a

bution that describes the population level admixture,
and is a vector of length k with element i equal to 1Aij

if the locus ancestry is from the ith subpopulation and
0 otherwise.

To reduce the posterior covariance between model pa-
rameters and thus ensure rapid mixing of the sampler,
each explanatory variable in the regression model is cen-
tered about the sample mean; the estimation of these
means is performed during the burn-in period. With a
linear regression model, the full conditional distribution
of the regression parameters is multivariate normal. With
a logistic regression model, the full conditional distribu-
tion of the regression parameters can be approximated
by a normal distribution, which we use as a proposal
distribution in a Metropolis-Hastings algorithm. Since the
full conditional distribution for the sum-of-intensities pa-
rameter t is log-concave, an adaptive rejection sampler
can be used (Gilks and Wild 1992). Autocorrelation be-
yond 10 iterations is low for all population-level param-
eters, except for the sum-of-intensities parameter t. The
required number of iterations for burn-in can be kept
short by choosing a plausible starting value for this pa-
rameter. The current version of the program cannot in-
corporate prior information about phase, although it sam-
ples the joint posterior distribution of ancestry states and
haplotypes at each locus.

Appendix B

Posterior Predictive Tests (Bayesian P Values)

Where the alternative to the fitted model cannot be
specified as the deviation of a continuous parameter
from its specified value, it is possible to construct a test
for lack of fit based on the posterior predictive check
probability (Rubin 1984). For each realization of the
missing data, replicate observations are generatedrepy
from the posterior predictive distribution and compared
with the observed data y by means of some test statistic
T. The posterior predictive check probability is defined
as the probability that the value of the test statistic com-
puted from is more extreme than the value computedrepy
from y, , where q are the modelrepPr [T(y ,q) � T(y,q)]
parameters. This probability is evaluated over the pos-
terior distribution of q and the posterior predictive dis-
tribution of . If there were no posterior uncertaintyrepy
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in q, this procedure would be equivalent to a classic
exact test, in which P values have a uniform distribution
on the interval 0–1 in hypothetical repetitions of the
experiment when the null hypothesis is true. With pos-
terior uncertainty in q, the posterior predictive check
probabilities are more conservative than classic P values,
because their distribution in hypothetical repetitions of
the experiment under the null is shrunk toward the ex-
pected value of 0.5. Where the test is used as a model
diagnostic, rather than for formal statistical inference,
this is not a serious problem.

Electronic-Database Information

The URL for data presented herein is as follows:

Genetic Epidemiology Group, London School of Hygiene
& Tropical Medicine, http://www.lshtm.ac.uk/eu/genetics
/index.html (for the ADMIXMAP program)
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